ar X iv : m at h / 99 05 08 0 v 1 [ m at h . Q A ] 1 2 M ay 1 99 9 Kontsevich star - product on the dual of a Lie algebra
نویسنده
چکیده
We show that on the dual of a Lie algebra g of dimension d, the star-product recently introduced by M. Kontsevich is equivalent to the Gutt star-product on g *. We give an explicit expression for the operator realizing the equivalence between these star-products.
منابع مشابه
ar X iv : m at h / 99 03 18 1 v 1 [ m at h . A G ] 3 0 M ar 1 99 9 PARABOLIC SHEAVES ON SURFACES AND AFFINE LIE ALGEBRA
متن کامل
ar X iv : m at h / 99 05 11 8 v 1 [ m at h . L O ] 1 9 M ay 1 99 9 REMARKS ON SETS RELATED TO TRIGONOMETRIC SERIES
We show that several classes of sets, like N 0-sets, Arbault sets, N-sets and pseudo-Dirichlet sets are closed under adding sets of small size.
متن کاملar X iv : q - a lg / 9 70 50 27 v 1 2 8 M ay 1 99 7 Jordanian U h , s gl ( 2 ) and its coloured realization
A two-parametric non-standard (Jordanian) deformation of the Lie algebra gl(2) is constructed, and then, exploited to obtain a new, triangular R-matrix solution of the coloured Yang-Baxter equation. The corresponding coloured quantum group is presented explicitly.
متن کاملar X iv : m at h / 99 02 05 8 v 1 [ m at h . G T ] 8 F eb 1 99 9 The limit configuration space integral for tangles and the Kontsevich integral
This article is the continuation of our first article (math/9901028). It shows how the zero-anomaly result of Yang implies the equality between the configuration space integral and the Kontsevich integral.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999